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Transforming growth factor- g 1 (TGF- g 1) is a critical cytokine for cell proliferation and differ-
entiation. It is secreted by many cells in a latent pro-form (LTGF- g 1) from which biologically
active TGF- g 1 is released by an in vivo mechanism that is not known. Here we show that the
mannose-6-phosphate/insulin-like growth factor II-receptor (M6P/IGFII-R), which binds
LTGF- g 1, complexes with urokinase (plasminogen activator)-receptor (uPA-R) on the surface
of human monocytes and directly binds plasminogen (Plg). Plasmin generated from Plg in
the complex mediates release of TGF- g 1 when M6P/IGFII-R is associated with uPA-R. Thus,
this interaction of M6P/IGFII-R and uPA-R suggests a potential mechanism for the genera-
tion of TGF- g 1 by cells.
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Abbreviations: AP: § 2-antiplasmin BB: Binding buffer BS:
Binding solution GPI: Glycosylphosphatidylinositol LAP:
Latency-associated peptide LTGF- I 1: Latent transforming
growth factor- g 1 M1P: Mannose-1-phosphate M6P/IGFII-
R: Mannose-6-phosphate/insulin-like growth factor II recep-
tor Plg: Plasminogen Plm: Plasmin PTK: Protein tyrosine
kinase TA: Tranexamic acid uPA: Urokinase plasminogen
activator uPA-R: Urokinase plasminogen activator-receptor
suPA-R: Soluble recombinant uPA-R

1 Introduction

TGF- g 1 is a pluripotent cytokine involved in many bio-
logical processes such as immunomodulation, wound
healing, extracellular matrix synthesis, proteolysis and
embryogenesis by regulating growth, differentiation and
development of many cell types [1–3]. The biological
importance is dramatically demonstrated by studies on
TGF- g 1 null mice which exhibit a disastrous phenotype
including multiorgan inflammatory syndrome, lack of
Langerhans cells, progressive growth retardation and
death by 4 weeks of age [4–6]. TGF- g 1 is produced by
many mammalian cells [7] and almost all cell types and

tissues express high-affinity receptors [8–12]. Because
of the numerous cells producing TGF- g 1 and its broad
biological action, its activity must be tightly controlled.
The basis for regulation of activity seems to be the secre-
tion of TGF- g 1 as a complex with latency-associated
peptide (LAP) forming latent TGF- g 1 (LTGF- g 1), which is
biologically inactive [13]. To elicit a biological response
via the interaction with specific cell surface receptors,
TGF- g 1 must be released from LTGF- g 1 [14, 15].

In vitro, denaturing treatments like extremes of pH or
heat [16] can release active TGF- g 1 from the non-
covalent association with LAP. Proteolytic activation has
been shown by plasmin, cathepsin D [17, 18] and calpain
[19]. Furthermore, LTGF- g 1 activation has been
described through thrombospondin-1, which induces
TGF- g 1 release probably by a conformational change
upon interaction with LTGF- g 1 [20]. Recently it has been
shown that histological abnormalities in lung and pan-
creas of thrombospondin-1 and TGF- g 1 null mice are
similar. However, early death and the autoimmune
destruction seen in the latter animals are not displayed
by the thrombospondin-1 null mice [21]. This indicates
that several pathways for LTGF- g 1 activation do exist
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and, in particular, that those underlying LTGF- g 1 conver-
sion for down-regulation of the immune system may not
require thrombospondin-1.

One of these further pathways for LTGF- g 1 activation
seems to involve the mannose-6-phosphate/insulin-like
growth factor II receptor (M6P/IGFII-R), a multifunctional
cell surface receptor [22]. M6P residues present in LAP
mediate binding of LTGF- g 1 to M6P/IGFII-R [23, 24], and
inhibition of this binding by M6P or Ab to M6P/IGFII-R
prevented TGF- g 1 formation in a cell culture system [25].
Besides M6P/IGFII-R, the fibrinolytic system appears to
be also of critical importance for LTGF- g 1 activation.
Plasmin (Plm) treatment of supernatants of transfectants
secreting LTGF- g 1 resulted in appearance of TGF- g 1
[18]. Furthermore, TGF- g 1 formation correlated with the
expression level of plasminogen (Plg), urokinase plas-
minogen activator (uPA) or uPA-R on various cells
[26–28], and this activation could be inhibited by M6P
[26, 27]. Taken together, these studies imply a connec-
tion between M6P/IGFII-R and the fibrinolytic system for
LTGF- g 1 activation by cells.

To explore the cellular mechanism of TGF- g 1 formation,
we therefore analyzed a possible physical and functional
association of M6P/IGFII-R and the fibrinolytic system.
The cell surface-associated fibrinolytic system is primed
by uPA-R, a glycosylphosphatidylinositol (GPI)-anchored
membrane protein, also termed CD87. Upon binding, its
ligand pro-uPA is proteolytically cleaved to uPA which
proteolytically converts Plg into the serine protease Plm.
Plm can directly degrade matrix proteins and activates a
variety of biologically potent substances [29, 30]. Previ-
ously, we found that uPA-R and other GPI-anchored pro-
teins are physically and functionally associated with pro-
tein tyrosine kinases (PTK) of the Src family [31, 32]. In
human monocytes, which among immune cells repre-
sent an important source of TGF- g 1 [33], the uPA-R –
Src-PTK association is organized as a large multicompo-
nent membrane microdomain, termed uPA-R complex,
which also contains g 2-integrins and additional unidenti-
fied molecules [32, 34]. Now we can report that M6P/
IGFII-R is one of these previously unidentified compo-
nents of the uPA-R complex. Furthermore, we found that
M6P/IGFII-R directly interacts with uPA-R and also binds
Plg. Moreover, the M6P/IGFII-R – uPA-R complex can
simultaneously recruit the ligands uPA, Plg and LTGF- g 1,
and controls uPA-mediated activation of Plg to Plm for
TGF- g 1 release.

2 Results and discussion

2.1 M6P/IGFII-R is part of the uPA-R complex

Monocytes were lysed in a solution of 1 % detergent Brij-
58, and the lysate was size fractionated on a Sepharose
4B column, which has an exclusion limit of tens of mil-
lions of daltons. Essentially all uPA-R and M6P/IGFII-R
were eluted in fractions close to the void volume of the
column, indicating that not only is uPA-R a component of
a large membrane complex as reported previously by us
[32], but also M6P/IGFII-R (Fig. 1A). In contrast, the
transmembrane protein CD147 [35] and the cytoplasmic
molecule annexin II, a known Plg receptor [36], were
detected only in fractions corresponding to smaller com-
plexes or to uncomplexed molecules. The common g -
chain of g 2-integrins, CD18, was distributed in all frac-
tions (Fig. 1A). These results indicated that most of M6P/
IGFII-R is contained in complexes of similar size as uPA-
R. To analyze whether M6P/IGFII-R and uPA-R are physi-
cally linked to a common complex, the uPA-R complex
was immunoprecipitated from surface-biotinylated
monocytes and then dissociated with a more stringent
detergent (see Sect. 4.3). M6P/IGFII-R was specifically
reprecipitated from these samples with a rabbit antise-
rum to M6P/IGFII-R, but neither with rabbit polyclonal
anti-CD18 Ab nor rabbit pre-immune serum which were
used as controls (Fig. 1B). Thus, we found that M6P/
IGFII-R is associated with uPA-R within a large plasma
membrane complex.

2.2 Stability of the association of uPA-R and
M6P/IGFII-R

To determine more details of the structural relationship
between uPA-R and M6P/IGFII-R in the complex,
surface-biotinylated monocytes were solubilized under
progressively more stringent detergent conditions to
systematically disrupt the complex. uPA-R was immuno-
precipitated and co-isolated biotinylated proteins were
visualized with streptavidin-peroxidase on a blot. Inter-
estingly, the uPA-R precipitate obtained from the lysate
using 1 % NP40 plus 0.2 % deoxycholate contained only
two biotinylated components: a 35–60-kDa zone corre-
sponding to uPA-R, and a 250-kDa zone corresponding
in size to M6P/IGFII-R (Fig. 2). Indeed, by a similar repre-
cipitation approach as shown before (Fig. 1B), the 250-
kDa band was identified as M6P/IGFII-R. This indicates
that M6P/IGFII-R is the surface protein most strongly
associated with uPA-R in monocytes and that both
receptors may represent the “core” of the uPA-R com-
plex.
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Figure 1. Co-localization of uPA-R and M6P/IGFII-R in
monocytes. (A) Distribution of uPA-R and M6P/IGFII-R in
size-fractionated monocyte lysate. The lysate was gel fil-
trated and the individual fractions were analyzed for pres-
ence of the indicated molecules by immunoblotting with
mAb H2 to uPA-R, rabbit antiserum to M6P/IGFII-R, mAb
MEM-M6/2 to CD147, mAb to annexin II and mAb MEM-48
to CD18. Fraction numbers are shown on top, as well as the
elution volume of erythrocytes (Ery), IgM- and IgG-Ab that
were used for calibration of the column. (B) Co-isolation of
M6P/IGFII-R and uPA-R. Immunoprecipitates from lysates
of biotinylated monocytes obtained by anti-uPA-R mAb H2
were subjected to reprecipitation using the indicated rabbit
antisera. Samples were analyzed by SDS-PAGE using a 4 %
gel followed by transfer to a membrane and detection of bio-
tinylated proteins using a streptavidin-peroxidase conjugate
and chemiluminescence.

Figure 2. Stability of the uPA-R – M6P/IGFII-R association.
Monocytes were surface biotinylated and lysed in lysis
buffer containing 1 % NP40 plus 0.2 % deoxycholate. uPA-R
was precipitated either by mAb H2 or by its natural ligand
uPA. mAb AFP-01 and BSA were used as controls. For high
resolution, immunoprecipitates were separated by SDS-
PAGE both on a 4 % (top) and a 8 % (bottom) gel. After
transfer to a membrane, biotinylated proteins were visual-
ized by a streptavidin-peroxidase conjugate and chemilumi-
nescence.

2.3 Direct interaction of uPA-R and M6P/IGFII-R

The detergent-resistant association between M6P/IGFII-
R and uPA-R suggested a direct protein-protein interac-
tion. To confirm this, we expressed a recombinant form
of M6P/IGFII-R fused at the C terminus with a small tag,
termed pTag, for convenient isolation and detection. The
resulting construct, M6P/IGFII-R-pTag, bound in an in
vitro binding assay natural GPI-linked uPA-R that was
affinity purified from U937 cells. M6P/IGFII-R-pTag also
interacted with a soluble recombinant uPA-R construct

lacking the GPI anchor (suPA-R, amino acids 1-277)
which was affinity isolated from supernatants of stably
transfected Chinese hamster ovary (CHO) cells. How-
ever, it did not react with a variety of control proteins,
including BSA and collagen (Fig. 3A). Neither form of
uPA-R reacted with a pTagged construct of the cell sur-
face protein CD147 [35] used as a further control
(Fig. 3B). Thus, this experiment demonstrates that M6P/
IGFII-R and uPA-R can directly interact, and indicates
that this binding is independent of the GPI part of uPA-R.
These results are in accordance with a recent report by
Nykjaer et al. [37]. We investigated whether an interac-
tion between putative M6P residues in the uPA-R and the
M6P-binding site in the M6P/IGFII-R may be responsible
for the binding of the two proteins. However, blocking
the M6P-binding sites on M6P/IGFII-R by co-incubation
of the receptor with M6P did not inhibit the binding to
uPA-R (Fig. 3A).

Next, we examined whether ligation of M6P/IGFII-R or
uPA-R by natural ligands modifies their interaction. Co-
incubation of M6P/IGFII-R with either LTGF- g 1 or IGFII,
the classical ligand of M6P/IGFII-R, had no significant
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Figure 3. Analysis of the binding of uPA-R to M6P/IGFII-R.
Wells of Falcon plates were coated with 10 ? g/ml of the indi-
cated molecules (A–C, upper rows). After blocking and
washing, wells were preincubated either with the second
ligand (C), or incubated for 1 h directly with BS that con-
tained either 5 ? g/ml of M6P/IGFII-R-pTag (A and C) or
CD147-pTaq (B) and was further supplemented with or with-
out the indicated molecules (bottom row). Binding of M6P/
IGFII-R-pTag or CD147-pTag was analyzed by SDS-PAGE
using a 4 % (A, C) or a 10 % gel (B), followed by immunoblot-
ting using anti-pTag mAb H902. The quality and quantity
of M6P/IGFII-R-pTag and CD147-pTag in the BS were
checked by applying 20 ? l of the respective BS directly to
the gel (A, B).

Figure 4. Analysis of the binding of Plg to M6P/IGFII-R. (A)
Reprecipitation of M6P/IGFII-R by Plg. Monocytes were bio-
tinylated and solubilized using 1 % NP40 plus 0.2 % deoxy-
cholate. Immunoprecipitates obtained by anti-uPA-R mAb
H2 were subjected to reprecipitation using Plg or BSA. After
SDS-PAGE and transfer to a membrane, biotinylated pro-
teins were visualized by a streptavidin-peroxidase conjugate
and chemiluminescence. (B) M6P/IGFII-R binds Plg in vitro.
Falcon plates were coated with 10 ? g/ml Plg. After blocking
and washing, wells were incubated for 1 h with BS that con-
tained 5 ? g/ml of M6P/IGFII-R-pTag and was further supple-
mented with or without the indicated molecules (bottom
row). Binding of M6P/IGFII-R-pTag was analyzed by SDS-
PAGE using a 4 % gel followed by immunoblotting using
anti-pTag mAb H902. Controls for this assay are shown in
Fig. 3.

influence on the binding of M6P/IGFII-R to uPA-R
(Fig. 3A). When uPA-R or suPA-R were engaged by uPA
that was coated on a plate, M6P/IGFII-R-pTag was able
to bind. uPA alone did not interact with M6P/IGFII-R-
pTag, demonstrating that the binding of M6P/IGFII-R to
uPA-R is neither mediated nor inhibited by uPA (Fig. 3C).
Together, these experiments indicate that neither ligation
of M6P/IGFII-R nor ligation of uPA-R prevents their
mutual interaction.

2.4 M6P/IGFII-R binds Plg and controls
conversion of Plg to Plm

uPA-R-bound uPA converts Plg into Plm [38], but the
underlying molecular mechanism at the cell surface is
unknown. Since M6P/IGFII-R is a multifunctional recep-
tor [22], we tested whether it also acts as a receptor for
Plg and controls its activation. Indeed, M6P/IGFII-R co-
isolated through uPA-R from monocyte lysates was
reprecipitated by Plg (Fig. 4A). Plg reacted also with the
recombinant M6P/IGFII-R-pTag in an in vitro binding
assay. The interaction was not significantly modified by
mannose-1-phosphate (M1P), M6P, IGFII, LTGF- g 1 or
suPA-R, but was inhibited by tranexamic acid (TA), a

lysine analog, suggesting that lysine residues are
involved in the binding (Fig. 4B).

To study the function of M6P/IGFII-R in Plg activation,
we allowed biotinylated Plg to bind to M6P/IGFII-R, and
analyzed conversion of Plg by uPA using SDS-PAGE
(uPA converts Plg to Plm by proteolytic cleavage at
amino acid Arg560-Val561, which can be detected on a gel).
We found that M6P/IGFII-R-bound Plg was activated,
and that the generated Plm remained associated with
M6P/IGFII-R (Fig. 5A). Under physiological conditions,
Plm must be protected against plasma proteases to pre-
vent its immediate inactivation. Plm bound to M6P/IGFII-
R was protected against a fast-acting natural inhibitor
§ 2-antiplasmin (AP), and was not released from the

receptor (Fig. 5B, complex and supernatant). Under the
same conditions, Plm in solution was immediately inhib-
ited by complex formation with AP (Fig. 5B, control).
Thus, M6P/IGFII-R binds Plg and seems to control the
conversion to and activity of the generated Plm.

2.5 Release of active TGF- I 1 from the uPA-R-
M6P/IGFII-R complex

Finally, we analyzed the involvement of the identified
uPA-R – M6P/IGFII-R complex on release of TGF- g 1
from LTGF- g 1. TGF- g 1 was formed when we treated a
protein complex composed of immobilized suPA-R,
M6P/IGFII-R, Plg and LTGF- g 1 with uPA (Fig. 6A). LTGF-
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Figure 5. Functional cooperation between M6P/IGFII-R and
Plg/Plm. (A) M6P/IGFII-R bound Plg is converted to Plm.
Wells coated with M6P/IGFII-R-pTag were incubated with
biotinylated Plg. After washing, the samples were treated
with or without 5 ? g/ml uPA for indicated times at 37 °C. Plg
both complexed to M6P/IGFII-R-pTag and released in the
supernatant was analyzed by SDS-PAGE under reducing
conditions using a 8 % gel followed by blotting and staining
with streptavidin-peroxidase. The control sample shows
conversion of Plg (1 ? g/ml) by uPA in solution. The positions
of Plg proteolytically converted to Plm are indicated by the
arrowheads. (B) M6P/IGFII-R-bound Plm is protected
against inhibition by complex formation with AP. Wells
coated with M6P/IGFII-R-pTag were incubated with biotiny-
lated Plm. After washing, the samples were treated with or
without 10 ? g/ml AP for the indicated times at 37 °C. Plm
both complexed to M6P/IGFII-R-pTag and released in the
supernatant was analyzed by SDS-PAGE under nonreduc-
ing conditions using a 6 % gel. The control sample shows
the inhibition of free Plm in solution. The positions of the
Plm-AP complex are indicated by arrowheads.

Figure 6. Release of active TGF- g 1 by the uPA-R – M6P/
IGFII-R complex. Protein complexes were built up on 96-
well plates by coating the first molecule followed by block-
ing, washing and incubation with 10 ? g/ml of the next mole-
cule. Abbreviations are: b, BSA; c, CD147-pTag; u, suPA-R;
m, M6P/IGFII-R-pTag; p, Plg; t, LTGF- g 1 (500 ng/ml). After
the last washing, samples were equilibrated with BB or AP
(10 ? g/ml) and incubated with 5 ? g/ml uPA or 2 ? g/ml Plm at
37 °C for the indicated times. As control, some of the sam-
ples were subjected to acid treatment. For detection of for-
mation of biologically active LTGF- g 1, an ELISA based on
recombinant TGF- g 1 type II receptor (R&D Systems) was
used.

g 1 was also activated in the presence of AP which con-
firms the protective role of M6P/IGFII-R for bound Plm
against its natural inhibitor and indicates that LTGF- g 1
activation can occur at this complex at physiological
conditions. Furthermore, this experiment suggests that
Plm bound to M6P/IGFII-R and not free Plm is responsi-
ble for activation of LTGF- g 1. This assumption was sup-
ported when we omitted uPA and Plg and treated the
complex of LTGF- g 1 and M6P/IGFII-R on immobilized
suPA-R with Plm alone. Only when we used amounts of
soluble Plm that exceeded at least ten times the amount
of Plm generated from Plg at M6P/IGFII-R under assis-
tance of uPA, was TGF- g 1 released. This TGF- g 1 activa-
tion, however, made only approximately 50 % the level
seen in the presence of uPA and Plg, and was
completely inhibitable by AP (Fig. 6A). Since we found
that Plm can degrade M6P/IGFII-R (data not shown),
we suggest that under this condition M6P/IGFII-R is
more easily degraded, which may result in the loss of
its protective role for LTGF- g 1 and subsequent activation
of LTGF- g 1 by free Plm. This is in agreement with previ-
ous findings describing activation of LTGF- g 1 by Plm in
conditioned medium [18] and our own observation

of LTGF- g 1 activation by Plm in solution (data not
shown).

Moreover, when we directly bound M6P/IGFII-R to the
plastic and loaded it with LTGF- g 1, treatment with 2 ? g/
ml Plm did not release measurable TGF- g 1 (Fig. 6B);
even 10 ? g/ml Plm did not show any effect (data not
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Figure 7. Schematic model of TGF- g 1 activation by the
uPA-R – M6P/IGFII-R complex. (A) uPA-R with its ligand uPA
can directly interact with M6P/IGFII-R. M6P/IGFII-R binds
via a distinct site Plg and enables uPA-mediated conversion
of Plg to Plm. Plm generated at the complex is protected
against inhibition by the fast-acting inhibitor AP and medi-
ates release of active TGF- g 1 from LTGF- g 1. (B) Treatment
of LTGF- g 1 bound to M6P/IGFII-R by Plm does not result in
the release of active TGF- g 1. This suggests that the M6P/
IGFII-R controls generation of Plm from Plg by uPA for con-
version of LTGF- g 1 and protects LTGF- g 1 from uncontrolled
activation by external Plm.

shown). However, TGF- g 1 was released from this com-
plex when Plm was generated from Plg under the assis-
tance of uPA, and the release was not inhibited by AP.
This shows that direct plastic coating of M6P/IGFII-R
does not abrogate LTGF- g 1 activation; though it seems
to provide a higher resistance for M6P/IGFII-R towards
digestion by free Plm. One could argue that incubation
with Plm alone did not result in detection of active TGF-
g 1 because Plm in solution is activating and immediately

digesting the released TGF- g 1. However, we could
exclude this possibility by demonstrating that LTGF- g 1 is
not degraded in Plm-incubated samples as virtually the
same quantity of TGF- g 1 was released from these as
compared to untreated ones upon standard in vitro
LTGF- g 1 activation by acid treatment (Fig. 6B). In this
experiment we could further show that LTGF- g 1 activa-
tion on M6P/IGFII-R was independent of the presence of
uPA-R, suggesting that the role of uPA-R in this complex
is restricted to the cell surface for directing uPA to M6P/
IGFII-R bound Plg (Fig. 6B). Together, these results indi-
cate that M6P/IGFII-R protects LTGF- g 1 against soluble
Plm and, furthermore, that activation of LTGF- g 1
requires controlled conversion of Plg to Plm by uPA on
M6P/IGFII-R.

3 Concluding remarks

We have shown in this study that M6P/IGFII-R and uPA-
R are associated at the surface of human monocytes,
and that this complex can simultaneously bind LTGF- g 1,
Plg and uPA. Furthermore, we found that the controlled
generation of Plm from Plg in this complex mediates
release of active TGF- g 1 from LTGF- g 1 (for illustration
see Fig. 7). Whether activity of Plm generated by this
complex is restricted to LTGF- g 1 or also targets other
Plm substrates is not known yet. It is evident from the
thrombospondin-1 null mice that several LTGF- g 1 acti-
vation mechanisms seem to exist [21] which may par-
tially substitute each other. This may be the reason why
Plg-deficient mice exhibit only delayed wound healing
[39] and wasting syndrome [40] as significant failure of
TGF- g 1-related functions. Our data are supported by
cellular assays demonstrating that uPA- and uPA-R-
dependent Plg activation has strong impact on LTGF- g 1
activation with macrophages [27], smooth muscle cells
[28] and endothelial cells [41]. Furthermore, agents
known to increase the expression of uPA, uPA-R or M6P/
IGFII-R such as IFN- + and LPS [20, 27, 42] can also
increase activation of LTGF- g 1 in cultures of monocytes/
macrophages [39, 43, 44]. It has been proposed earlier
that TGF- g 1 may negatively regulate its own activity [45,
46]; TGF- g 1 induces expression of Plg activator
inhibitor-1 [47], which inactivates uPA-R-bound uPA [30].
Thus, the M6P/IGFII-R – uPA-R complex may have not

only the potential for activation but also for feedback
inhibition of TGF- g 1 activity. Specific targeting of the
individual mechanisms of LTGF- g 1 activation as well as
inducing pathological situations in knockout/transgenic
mice will bring us closer to understand the individual
types of LTGF- g 1 activation mechanisms for particular
function and to develop strategies to specifically control
LTGF- g 1 activation for therapeutic purposes.
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4 Materials and methods

4.1 Antibodies

The following mAb were prepared in our laboratories: H2
(IgG1) to uPA-R [32], MEM-48 (IgG1) to CD18, MEM-M6/2
(IgG1) to CD147 [35], and isotype control mAb AFP-01
(IgG1) to § -fetoprotein. The mAb to annexin II (IgG1) was
from Transduction Laboratories (Lexington, KY). Rabbit
polyclonal antiserum to M6P/IGFII-R was a kind gift of Dr. P.
Lobel (Center for Advanced Biotechnology and Medicine,
Piscataway, NJ). Rabbit polyclonal Ab to CD18 was pro-
vided by G. Boonen (La Jolla Cancer Research Foundation,
La Jolla, CA). The anti-pTag mAb H902-producing hybrid-
oma cell line is reagent no. 521 from the NIH AIDS Research
and Reference Program.

4.2 Size fractionation of monocyte lysate

Human PBMC were isolated from blood of healthy individu-
als by density gradient centrifugation over Ficoll-Hypaque
(Pharmacia, Uppsala, Sweden). Monocytes were separated
by 1 h adhesion to plastic and solubilized as described [48].
Briefly, cells (2 × 107/ml) were lysed for 30 min at 4 °C in lysis
buffer (20 mM Tris-HCl, pH 8.2, 140 mM NaCl) that con-
tained 1 % Brij-58 (Pierce, Rockford, IL) as detergent, and a
mixture of protease inhibitors [5 mM iodoacetamide, aproti-
nin and leupeptin (both 10 ? g/ml), 1 mM phenylmethylsulfo-
nyl fluoride, 0.1 mM quercetin, 0.1 mM N-tosyl-L-phenyl-
alanine chlormethyl ketone, 0.1 mM N § -p-tosyl-L-lysine
chlormethyl ketone, 0.1 M N-CBZ-L-Phenylalanine chlorme-
thyl ketone, 1 ? M pepstatin A] (all from Sigma Chemical Co.,
St. Louis, MO). The lysate was centrifuged for 5 min at
10 000 × g and the supernatant was size fractionated on a
Sepharose-4B column as described [49]. Resulting fractions
were separated by SDS-PAGE followed by a transfer to
Immobilon P (Millipore Corporation, Bedford, MA) polyvinyl-
idene difluoride membranes. Membranes were blocked by
using 2 % nonfat milk and immunostained. For visualization
of proteins, the chemiluminescence system from Boehringer
Mannheim (Mannheim, Germany) was used.

4.3 Immunoprecipitation and reprecipitation

Monocytes prepared as described above were surface bioti-
nylated by using 0.5 mg/ml sulfo-NHS-LC-biotin (Pierce) in
PBS. After a 1-h incubation at 4 °C, the reaction was
stopped with 20 mM Tris-HCl (pH 8.2). Cells (2 × 107/ml)
were lysed for 30 min at 4 °C in lysis buffer (see above) con-
taining 1 % NP40 (Pierce) as detergent. The lysate was cen-
trifuged for 5 min at 10 000 × g. The supernatant was divided
and the resulting samples were treated with increasing con-
centrations of deoxycholate to further disrupt molecular
interactions. Then, samples were precleared with IgG1-
Sepharose (irrelevant IgG1 mAb coupled to CNBr-
Sepharose) and subjected to immunoprecipitation using

mAb- or ligand-coated Sepharose beads. Immunoprecipi-
tates were washed four times with lysis buffer containing
1 % NP40 and analyzed by immunoblotting. Membranes
were blocked with 5 % BSA in Tris-buffered saline, and bioti-
nylated proteins were visualized on the blot by a
streptavidin-peroxidase conjugate (Amersham, Aylesbury,
GB) and chemiluminescence.

For reprecipitation, immunoprecipitates were eluted with
lysis buffer containing 1 % deoxycholate as a detergent.
Afterwards, samples were diluted in lysis buffer containing
1 % NP40 to a final concentration of 0.05 % deoxycholic
acid, and subjected to reprecipitation by using Ab or ligands
coupled to Sepharose beads. Beads were washed twice
with lysis buffer containing 1 % NP40. Analysis was per-
formed by using SDS-PAGE followed by blotting and detec-
tion of proteins by chemiluminescence.

4.4 Construction of p-tagged receptor proteins

The pTag DNA [50] was fused to the 3’-end of the cDNA
encoding M6P/IGFII-R (American Type Culture Collection,
Rockville, MD), or CD147 [35] used as control. This resulted
in the C-terminal addition of the amino acid sequence VDA-
AMAHHHHHHGSRIQRGPGRAFVTIGKLEAAA to the natural
protein sequence. RIQRGPGRAFVTIGK is the universal epi-
tope for mAb H902. The DNA constructs were ligated into
eucaryotic expression vectors, and the resulting plasmids
were used to transiently transfect COS cells. The expressed
proteins were termed M6P/IGFII-R-pTag and CD147-pTag,
respectively.

4.5 Purification of receptor proteins

M6P/IGFII-R-pTag and CD147-pTag were purified to homo-
geneity by affinity chromatography using anti-pTag mAb
H902 coupled to Sepharose. The natural form of uPA-R was
purified from lysates of the monocytic cell line U937 by affin-
ity chromatography using mAb H2. suPA-R (amino acids 1-
277) was constructed and purified from supernatants of sta-
bly transfected CHO cells as described [51].

4.6 In vitro binding assay

Various molecules (see Figs. 3 and 4) were coated at a con-
centration of 10 ? g/ml on 96-well Falcon plates in binding
buffer (BB) (20 mM Tris-HCl, pH 7.5, 140 mM NaCl). Wells
were blocked with 1 % BSA, washed and preincubated
either with a second step molecule, or incubated for 1 h
directly with binding solution (BS; BB supplemented with
0.2 % NP40 and 2 ? g/ml aprotinin) that contained either
5 ? g/ml of M6P/IGFII-R-pTag or CD147-pTag in the absence
or presence of the following molecules: M1P and M6P
(4 mM), LTGF- g 1 (10 ? g/ml) (R&D Systems, Minneapolis,
MN), IGFII (5 ? g/ml) (Calbiochem-Novabiochem, La Jolla,
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CA), suPA-R and uPA-R (10 ? g/ml), Plg (10 ? g/ml) (American
Diagnostica, Greenwich, CT), TA (1 mM) (Sigma Chem. Co.).
Wells were washed four times with BB, and binding of M6P/
IGFII-R-pTag or CD147-pTag was analyzed by SDS-PAGE
followed by immunoblotting using anti-pTag mAb H902.

4.7 Plg activation and Plm protection assay

Plg (1 mg/ml) (Technoclone, Vienna, Austria) was biotiny-
lated with 30 ? g/ml biotin-X-NHS (Calbiochem) in 200 mM
Na2CO3 (pH 9.0) for 1 h at room temperature. Biotinylation
was quenched with 50 mM Tris-HCl (pH 9.0), and free biotin
was removed by exhaustive dialysis against BB.

For the Plg activation assay, 96-well Falcon plates were
coated with 10 ? g/ml M6P/IGFII-R-pTag and blocked with
1 % BSA. Afterwards, wells were incubated on ice for 1 h
with biotinylated Plg (10 ? g/ml) in BB and washed four times.
Samples were then incubated with or without 5 ? g/ml uPA
for various times at 37 °C. For the Plm protection assay, bio-
tinylated Plg was converted to Plm by incubation with uPA
(100:1 molar ratio) for 1 h at 37 °C. Afterwards, M6P/IGFII-R-
pTag-coated wells were incubated for 1 h on ice with 10 ? g/
ml biotinylated Plm in BB containing 0.1 % BSA, washed
four times, and incubated in the absence or presence of
10 ? g/ml AP (Technoclone) at 37 °C for various times. Both
the complex and the supernatant of each assay were ana-
lyzed by SDS-PAGE followed by blotting and staining with
streptavidin-peroxidase.

4.8 TGF- I 1 activation assay

Protein complexes were built up on 96-well plates by coat-
ing the first molecule (10 ? g/ml) in BB for 1 h on ice followed
by blocking with 1 % BSA, washing and incubation with
10 ? g/ml of the next molecule. After the last washing, sam-
ples were equilibrated with BB with or without AP (10 ? g/ml)
and treated either by uPA (5 ? g/ml) or Plm (2 ? g/ml) for vari-
ous times at 37 °C. Proteolytic treatment was stopped using
0.5 % BSA and 10 ? g/ml aprotinin. Acid treatment was per-
formed as described [18]. Active TGF- g 1 formation was
detected using an ELISA based on recombinant TGF- g 1
type II receptor (R&D Systems).
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